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Abstract
The problem of normal and anomalous diffusion is formulated on the basis
of integral master-type equations with various probability transition functions
for diffusion in coordinate space (PTD functions). Grain diffusion in dusty
plasmas has a normal character. The dependence of the diffusion coefficient as
a function of the grain–grain interaction strength is investigated.

PACS numbers: 52.27.Lw, 52.20.Hv, 52.25.Fi, 82.70.−y

1. Introduction

Under usual conditions, the stochastic motion of particles leads to a second moment of their
space distribution that is linear in time 〈r2(t)〉 ∼ Dt . Such types of diffusion processes play
a crucial role in plasmas, including dusty plasmas and neutral systems in various phases. At
the same time in many physical, chemical and biological systems deviations from the linear
in time dependence of the mean-squared displacement have been experimentally observed.
The average square separation of a pair of particles in a turbulent flow grows, according to
Richardson’s law, with the third power of time [1]. For diffusion, typical for glasses and related
complex systems [2], the observed time dependence is slower than linear. These two types of
anomalous diffusion obviously are characterized as superdiffusion and subdiffusion. In this
paper, we consider the normal diffusion of grains in dusty plasmas and the new approach to
anomalous diffusion, which is universal for subdiffusive and superdiffusive systems.

2. Master equation for diffusion

Let us consider diffusion in coordinate space on the basis of the master equation.The structure
of this equation is formally similar to the master equation in the momentum space, except for
the conservation law in momentum space:

dfg(r, t)
dt

=
∫

dr′{W(r, r′)fg(r′, t) − W(r′, r)fg(r, t)}. (1)
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Here and below we use for the PTD function the designation W . The probability transition
W(r, r′) describes the probability for a grain to move from the point r′ to the point r per unit
time. We can rewrite this equation in the coordinates u = r′ − r and r.

Assuming that the characteristic displacements are small one may expand equation (1)
and arrive at the Fokker–Planck form of the equation for the density distribution fg(r, t)

dfg(r, t)
dt

= ∂

∂rα

[
Aα(r)fg(r, t) +

∂

∂rβ

(Dαβ(r)fg(r, t))
]

. (2)

The coefficients Aα and Dαβ , describing the acting force and diffusion, respectively, can be
written as functionals of the PTD function W in the form:

Aα(r) =
∫

dsu uαW(u, r), Dαβ(r) = 1

2

∫
dsu uαuβW(u, r), (3)

where s is the dimension of coordinate space. For a homogeneous medium, when the
r-dependence of the PTD function is absent, the coefficients Aα = 0 while the diffusion
tensor is diagonal Dαβ = δαβD, where

D = 1

2s

∫
dsu u2W(u). (4)

If the structure of the PTD function W leads to divergence of the integral (4) the expansion in
equation (1) is not possible. Then we have to apply the methods discussed in [3, 4] and arrive
at the cases of anomalous diffusion. In the general case, when the PTD function W depends
also on time, the mean-squared displacement 〈r2(t)〉 is equal to

〈r2(t)〉 = −
∫ σ+i∞

σ−i∞

dz

2π i

{
∂2fg(k, z)

∂k2
+

[
(s − 1)

k
+ δs,1δ(k)

]
∂fg(k, z)

∂k

}
|k→0

exp(zt), (5)

where fg(k, z) is the Fourier–Laplace transform of the solution of the generalized integral
diffusion equation with time-dependent W(r − r′, t).

If the structure of PTD function W provides finiteness of the integral (4), we arrive at the
case of normal diffusion. We apply hydrodynamics to consider the normal grain diffusion in
dusty plasma with a moderate grain–grain interaction in the next section.

3. Diffusive mode for small perturbations in dusty plasma

Dusty plasmas are composed of electrons, ions, atoms and highly charged grains (or dust
particles). The equilibrium charge of grains can be of the order of thousands of electron
charges. For rather high grain density, a moderate or strong grain–grain electrostatic interaction
can be realized and the mean-squared displacement of dust depends not only on the collision
frequency between grains and atoms, but also on the parameter of interaction between the
grains and the typical Debye length of the ambient plasma. Numerical calculations of particle
dynamics and structure properties for grains in the model of dust particles strongly interacting
via the Debye potential have been performed in a number of papers, e.g. [5] (for an overview
also see [6, 7]).

In the present paper, we consider the diffusion mode for a weak or moderate interaction
between the charged grains in a gaseous plasma with the interaction parameter � = Z2

d0e
2
/

bTd � 1, where Zd0, b = n
−1/3
d and Td are the average grain charge number, average

distance between the grains and the grain temperature, respectively. For the low-frequency
perturbations, the electrons and ions in plasmas can be treated as Boltzmann distributed

nα = nα0 exp

(
−qαϕ

Tα

)
, α = e, i, (6)
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where ϕ, Tα and qα are the self-consistent potential, the temperatures and charges of the
electrons and ions. To describe the dust dynamics we use the continuity equation and the
hydrodynamic equation of motion

∂nd

∂t
+

∂(ndvd)

∂r
= 0,

∂vd

∂t
+ vd

∂vd

∂r
+

1

mdnd

∂Pd

∂r
+

qd

md

∂ϕ

∂r
+ νvd = 0. (7)

Here vd is the flow velocity for dust and qd,md and ν are the charge, mass and the collision
frequency, respectively, with atoms of the dust particles. The atomic component is considered
as an undisturbed medium. The pressure Pd for the weakly interacting dust is determined by
the integral over v with the distribution function of grains:

Pd = P K
d ≡ md

3

∫
dv v2fd(v, r, t). (8)

In the general case, the full pressure Pd includes also the term with the pair correlation function
responsible for interaction between the grains. The potential ϕ obeys the Poisson equation:


ϕ = −4πρ, ρ = (Zieni − ene + qdnd). (9)

Here e is equal to the modulus of the electron charge. For negatively charged grains
qd = −Zd(r)e. To take into account the dust charge fluctuations, we will use the orbit
limited model (OML) and suggest the particles are in local thermal equilibrium

ne(r, t)
ni(r, t)

= α

(
1 +

Zd(r, t)e2

aTi

)
exp

(
Zd(r, t)e2

aTe

)
, (10)

where α ≡ √
Time/Temi and a is the radius of grains. For simplicity, we neglect from

the beginning the grain charge fluctuations. Then from equations (6)–(9) for the small
perturbations proportional to exp(−iωt + ikr) we obtain for the fluctuation of the grain density
n1

d {
−iων + k2

(
ω2

pd

k2 + k2
D

+
1

md

∂Pd

∂nd

)}
n1

d = 0. (11)

Here kD is the wave-vector, which provides the screening of the electrostatic field in plasmas
by the electrons and ions with the Debye radius λ = 1/kD . For k 	 kD , equation (11)
describes the specific diffusive mode in dusty plasmas with the diffusion coefficient D̃:

ω = −ik2D̃, D̃ = D

[
1

Td

∂Pd

∂nd

+
ω2

pd

k2
Dv2

T d

]
. (12)

Here vT d = √
Td/md and ωpd are the thermal velocity and plasma frequency (for the average

charge) of grains and D = v2
Td

/
ν is the diffusion coefficient of the uncharged grains in the

ambient atomic media. The diffusion coefficient D̃ can be rewritten as a function of two
dimensionless parameters � and κ−1 = λn

1/3
d

D̃ = D

[
1 +

4π�

κ2

]
, (13)

where we suggested that grains are weakly interacting (� � 1) and Pd = P K
d = ndTd . As

follows from equation (13) even for � � 1, the effective diffusion coefficient can be much
bigger than D if κ � 1. This effect is similar to ambipolar diffusion in electron–ion plasmas.
The usual ambipolar mode

ωa = −ik2

(
λ2

e + λ2
i

)
DeDi

λ2
eDe + λ2

i Di

(14)
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exists in dusty plasmas in parallel with the dust diffusion mode (12), but has a bigger decrement
than ω. For the case λe = λi and De 
 Di , equation (14) leads to the standard result
ωa = −2ik2Di . It can be included in the consideration simultaneously with the dust diffusion
mode ω by taking into account the inertial terms in the continuity equations for electrons and
ions. The dust diffusive mode can be interpreted as the grain diffusion in the atomic gas with
the effective temperature T ∗

d = Td(1 + 4π�/κ2). A tendency to linear increase of the diffusion
coefficient as a function of � for moderate values of � has also been found in [5] by numerical
calculations.

Let us take into account the fluctuations of the grain charge by use of equation (10).
This model of diffusion in dusty plasmas, taking into account the charging process, leads
to renormalization of the diffusion mode and the diffusion coefficient by the simple change
λ → λ∗(Zd0) < λ, where λ∗(Zd0) ≡ 1/k∗

D(Zd0) and k∗2
D (Zd0) is equal to

k∗2
D (Zd0) = k2

D +
4πn0

daTi

T ∗ L(Zd0, τ ). (15)

In equation (15), 1/T ∗ ≡ (1/Te + Zi/Ti) � Zi/Ti, τ ≡ Ti/Te 	 1 and the function L equals

L(Zd0, τ ) =
(
1 + Zd0e

2

aTi

)
1 + τ

(
1 + Zd0e2

aTi

) . (16)

This renormalization shows that inclusion of charging effects tends to a slower increase of the
diffusion coefficient D̃ as a function of � than in the model with a fixed grain charge.

Returning to equation (12), we can take into account the influence of interaction between
the grains on the diffusive mode via the pressure Pd . For the case � � 1 and Z2

0n
0
d 
 n0

i in
the Debye–Huckel approximation for Pd , we arrive finally at a modification of equation (13)
for the diffusion coefficient

D̃ = D

[
1 +

4π�

κ∗2
−

√
π�3/2

2

]
, (17)

where (κ∗)−1 = λ∗n1/3
d . The derivative ∂D̃/∂� changes sign for (κ∗)−2 = �1/2/8

√
π . For

large values of �, the approximation suggested in [8] for P(�, κ) can be used to find D̃. For
some values of � 
 1 and κ the coefficient D̃ is negative, implying an unstable regime of
diffusion in the considered model.

It is necessary to underline that the above approach for a weak grain–grain interaction
includes both the collective and self-diffusion, which always exist simultaneously in many-
particle systems embedded in the ambient media and can be separated only as an approximation
(sometimes successfully for the specific models and parameters of plasma).
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